Generalized Iterative Closest Point (G-ICP)
(바빠서 코드만 살펴보고 설명을 못 적는 중…)
https://pointclouds.org/documentation/registration_8hpp_source.html
template <typename PointSource, typename PointTarget, typename Scalar>
inline void
Registration<PointSource, PointTarget, Scalar>::align(PointCloudSource& output)
{
align(output, Matrix4::Identity());
}
template <typename PointSource, typename PointTarget, typename Scalar>
inline void
Registration<PointSource, PointTarget, Scalar>::align(PointCloudSource& output,
const Matrix4& guess)
{
if (!initCompute())
return;
// Resize the output dataset
output.resize(indices_->size());
// Copy the header
output.header = input_->header;
// Check if the output will be computed for all points or only a subset
if (indices_->size() != input_->size()) {
output.width = indices_->size();
output.height = 1;
}
else {
output.width = static_cast<std::uint32_t>(input_->width);
output.height = input_->height;
}
output.is_dense = input_->is_dense;
// Copy the point data to output
for (std::size_t i = 0; i < indices_->size(); ++i)
output[i] = (*input_)[(*indices_)[i]];
// Set the internal point representation of choice unless otherwise noted
if (point_representation_ && !force_no_recompute_)
tree_->setPointRepresentation(point_representation_);
// Perform the actual transformation computation
converged_ = false;
final_transformation_ = transformation_ = previous_transformation_ =
Matrix4::Identity();
// Right before we estimate the transformation, we set all the point.data[3] values to
// 1 to aid the rigid transformation
for (std::size_t i = 0; i < indices_->size(); ++i)
output[i].data[3] = 1.0;
computeTransformation(output, guess);
deinitCompute();
}
struct _PointXYZ
{
PCL_ADD_POINT4D; // This adds the members x,y,z which can also be accessed using the point (which is float[4])
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
https://pointclouds.org/documentation/point__types_8hpp_source.html
template <typename PointSource, typename PointTarget>
inline void
GeneralizedIterativeClosestPoint<PointSource, PointTarget>::computeTransformation(
PointCloudSource& output, const Eigen::Matrix4f& guess)
{
pcl::IterativeClosestPoint<PointSource, PointTarget>::initComputeReciprocal();
// Difference between consecutive transforms
double delta = 0;
// Get the size of the source point cloud
const std::size_t N = indices_->size();
// Set the mahalanobis matrices to identity
mahalanobis_.resize(N, Eigen::Matrix3d::Identity());
// Compute target cloud covariance matrices
if ((!target_covariances_) || (target_covariances_->empty())) {
target_covariances_.reset(new MatricesVector);
computeCovariances<PointTarget>(target_, tree_, *target_covariances_);
}
// Compute input cloud covariance matrices
if ((!input_covariances_) || (input_covariances_->empty())) {
input_covariances_.reset(new MatricesVector);
computeCovariances<PointSource>(input_, tree_reciprocal_, *input_covariances_);
}
base_transformation_ = Eigen::Matrix4f::Identity();
nr_iterations_ = 0;
converged_ = false;
double dist_threshold = corr_dist_threshold_ * corr_dist_threshold_;
pcl::Indices nn_indices(1);
std::vector<float> nn_dists(1);
pcl::transformPointCloud(output, output, guess);
while (!converged_) {
std::size_t cnt = 0;
pcl::Indices source_indices(indices_->size());
pcl::Indices target_indices(indices_->size());
// guess corresponds to base_t and transformation_ to t
Eigen::Matrix4d transform_R = Eigen::Matrix4d::Zero();
for (std::size_t i = 0; i < 4; i++)
for (std::size_t j = 0; j < 4; j++)
for (std::size_t k = 0; k < 4; k++)
transform_R(i, j) += double(transformation_(i, k)) * double(guess(k, j));
Eigen::Matrix3d R = transform_R.topLeftCorner<3, 3>();
for (std::size_t i = 0; i < N; i++) {
PointSource query = output[i];
query.getVector4fMap() = transformation_ * query.getVector4fMap();
if (!searchForNeighbors(query, nn_indices, nn_dists)) {
PCL_ERROR("[pcl::%s::computeTransformation] Unable to find a nearest neighbor "
"in the target dataset for point %d in the source!\n",
getClassName().c_str(),
(*indices_)[i]);
return;
}
// Check if the distance to the nearest neighbor is smaller than the user imposed
// threshold
if (nn_dists[0] < dist_threshold) {
Eigen::Matrix3d& C1 = (*input_covariances_)[i];
Eigen::Matrix3d& C2 = (*target_covariances_)[nn_indices[0]];
Eigen::Matrix3d& M = mahalanobis_[i];
// M = R*C1
M = R * C1;
// temp = M*R' + C2 = R*C1*R' + C2
Eigen::Matrix3d temp = M * R.transpose();
temp += C2;
// M = temp^-1
M = temp.inverse();
source_indices[cnt] = static_cast<int>(i);
target_indices[cnt] = nn_indices[0];
cnt++;
}
}
// Resize to the actual number of valid correspondences
source_indices.resize(cnt);
target_indices.resize(cnt);
/* optimize transformation using the current assignment and Mahalanobis metrics*/
previous_transformation_ = transformation_;
// optimization right here
try {
rigid_transformation_estimation_(
output, source_indices, *target_, target_indices, transformation_);
/* compute the delta from this iteration */
delta = 0.;
for (int k = 0; k < 4; k++) {
for (int l = 0; l < 4; l++) {
double ratio = 1;
if (k < 3 && l < 3) // rotation part of the transform
ratio = 1. / rotation_epsilon_;
else
ratio = 1. / transformation_epsilon_;
double c_delta =
ratio * std::abs(previous_transformation_(k, l) - transformation_(k, l));
if (c_delta > delta)
delta = c_delta;
}
}
} catch (PCLException& e) {
PCL_DEBUG("[pcl::%s::computeTransformation] Optimization issue %s\n",
getClassName().c_str(),
e.what());
break;
}
nr_iterations_++;
if (update_visualizer_ != 0) {
PointCloudSourcePtr input_transformed(new PointCloudSource);
pcl::transformPointCloud(output, *input_transformed, transformation_);
update_visualizer_(*input_transformed, source_indices, *target_, target_indices);
}
// Check for convergence
if (nr_iterations_ >= max_iterations_ || delta < 1) {
converged_ = true;
PCL_DEBUG("[pcl::%s::computeTransformation] Convergence reached. Number of "
"iterations: %d out of %d. Transformation difference: %f\n",
getClassName().c_str(),
nr_iterations_,
max_iterations_,
(transformation_ - previous_transformation_).array().abs().sum());
previous_transformation_ = transformation_;
}
else
PCL_DEBUG("[pcl::%s::computeTransformation] Convergence failed\n",
getClassName().c_str());
}
final_transformation_ = previous_transformation_ * guess;
PCL_DEBUG("Transformation "
"is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%"
"5f\t%5f\t%5f\t%5f\n",
final_transformation_(0, 0),
final_transformation_(0, 1),
final_transformation_(0, 2),
final_transformation_(0, 3),
final_transformation_(1, 0),
final_transformation_(1, 1),
final_transformation_(1, 2),
final_transformation_(1, 3),
final_transformation_(2, 0),
final_transformation_(2, 1),
final_transformation_(2, 2),
final_transformation_(2, 3),
final_transformation_(3, 0),
final_transformation_(3, 1),
final_transformation_(3, 2),
final_transformation_(3, 3));
// Transform the point cloud
pcl::transformPointCloud(*input_, output, final_transformation_);
}
template <typename PointSource, typename PointTarget>
void
GeneralizedIterativeClosestPoint<PointSource, PointTarget>::applyState(
Eigen::Matrix4f& t, const Vector6d& x) const
{
// Z Y X euler angles convention
Eigen::Matrix3f R;
R = Eigen::AngleAxisf(static_cast<float>(x[5]), Eigen::Vector3f::UnitZ()) *
Eigen::AngleAxisf(static_cast<float>(x[4]), Eigen::Vector3f::UnitY()) *
Eigen::AngleAxisf(static_cast<float>(x[3]), Eigen::Vector3f::UnitX());
t.topLeftCorner<3, 3>().matrix() = R * t.topLeftCorner<3, 3>().matrix();
Eigen::Vector4f T(static_cast<float>(x[0]),
static_cast<float>(x[1]),
static_cast<float>(x[2]),
0.0f);
t.col(3) += T;
}
template <typename PointSource, typename PointTarget, typename Scalar>
bool
Registration<PointSource, PointTarget, Scalar>::initComputeReciprocal()
{
if (!input_) {
PCL_ERROR("[pcl::registration::%s::compute] No input source dataset was given!\n",
getClassName().c_str());
return (false);
}
if (source_cloud_updated_ && !force_no_recompute_reciprocal_) {
tree_reciprocal_->setInputCloud(input_);
source_cloud_updated_ = false;
}
return (true);
}
https://pointclouds.org/documentation/gicp_8h_source.html#l00106
{
min_number_correspondences_ = 4;
reg_name_ = "GeneralizedIterativeClosestPoint";
max_iterations_ = 200;
transformation_epsilon_ = 5e-4;
corr_dist_threshold_ = 5.;
rigid_transformation_estimation_ = [this](const PointCloudSource& cloud_src,
const pcl::Indices& indices_src,
const PointCloudTarget& cloud_tgt,
const pcl::Indices& indices_tgt,
Eigen::Matrix4f& transformation_matrix) {
estimateRigidTransformationBFGS(
cloud_src, indices_src, cloud_tgt, indices_tgt, transformation_matrix);
};
}
template <typename PointSource, typename PointTarget>
void
GeneralizedIterativeClosestPoint<PointSource, PointTarget>::
estimateRigidTransformationBFGS(const PointCloudSource& cloud_src,
const pcl::Indices& indices_src,
const PointCloudTarget& cloud_tgt,
const pcl::Indices& indices_tgt,
Eigen::Matrix4f& transformation_matrix)
{
// need at least min_number_correspondences_ samples
if (indices_src.size() < min_number_correspondences_) {
PCL_THROW_EXCEPTION(
NotEnoughPointsException,
"[pcl::GeneralizedIterativeClosestPoint::estimateRigidTransformationBFGS] Need "
"at least "
<< min_number_correspondences_
<< " points to estimate a transform! "
"Source and target have "
<< indices_src.size() << " points!");
return;
}
// Set the initial solution
Vector6d x = Vector6d::Zero();
// translation part
x[0] = transformation_matrix(0, 3);
x[1] = transformation_matrix(1, 3);
x[2] = transformation_matrix(2, 3);
// rotation part (Z Y X euler angles convention)
// see: https://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
x[3] = std::atan2(transformation_matrix(2, 1), transformation_matrix(2, 2));
x[4] = asin(-transformation_matrix(2, 0));
x[5] = std::atan2(transformation_matrix(1, 0), transformation_matrix(0, 0));
// Set temporary pointers
tmp_src_ = &cloud_src;
tmp_tgt_ = &cloud_tgt;
tmp_idx_src_ = &indices_src;
tmp_idx_tgt_ = &indices_tgt;
// Optimize using BFGS
OptimizationFunctorWithIndices functor(this);
BFGS<OptimizationFunctorWithIndices> bfgs(functor);
bfgs.parameters.sigma = 0.01;
bfgs.parameters.rho = 0.01;
bfgs.parameters.tau1 = 9;
bfgs.parameters.tau2 = 0.05;
bfgs.parameters.tau3 = 0.5;
bfgs.parameters.order = 3;
int inner_iterations_ = 0;
int result = bfgs.minimizeInit(x);
result = BFGSSpace::Running;
do {
inner_iterations_++;
result = bfgs.minimizeOneStep(x);
if (result) {
break;
}
result = bfgs.testGradient();
} while (result == BFGSSpace::Running && inner_iterations_ < max_inner_iterations_);
if (result == BFGSSpace::NoProgress || result == BFGSSpace::Success ||
inner_iterations_ == max_inner_iterations_) {
PCL_DEBUG("[pcl::registration::TransformationEstimationBFGS::"
"estimateRigidTransformation]");
PCL_DEBUG("BFGS solver finished with exit code %i \n", result);
transformation_matrix.setIdentity();
applyState(transformation_matrix, x);
}
else
PCL_THROW_EXCEPTION(
SolverDidntConvergeException,
"[pcl::" << getClassName()
<< "::TransformationEstimationBFGS::estimateRigidTransformation] BFGS "
"solver didn't converge!");
}
template <typename PointSource, typename PointTarget>
inline double
GeneralizedIterativeClosestPoint<PointSource, PointTarget>::
OptimizationFunctorWithIndices::operator()(const Vector6d& x)
{
Eigen::Matrix4f transformation_matrix = gicp_->base_transformation_;
gicp_->applyState(transformation_matrix, x);
double f = 0;
int m = static_cast<int>(gicp_->tmp_idx_src_->size());
for (int i = 0; i < m; ++i) {
// The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
Vector4fMapConst p_src =
(*gicp_->tmp_src_)[(*gicp_->tmp_idx_src_)[i]].getVector4fMap();
// The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
Vector4fMapConst p_tgt =
(*gicp_->tmp_tgt_)[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap();
Eigen::Vector4f p_trans_src(transformation_matrix * p_src);
// Estimate the distance (cost function)
// The last coordinate is still guaranteed to be set to 1.0
// The d here is the negative of the d in the paper
Eigen::Vector3d d(p_trans_src[0] - p_tgt[0],
p_trans_src[1] - p_tgt[1],
p_trans_src[2] - p_tgt[2]);
Eigen::Vector3d Md(gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]) * d);
// increment= d'*Md/num_matches = d'*M*d/num_matches (we postpone
// 1/num_matches after the loop closes)
f += double(d.transpose() * Md);
}
return f / m;
}
template <typename PointSource, typename PointTarget>
inline void
GeneralizedIterativeClosestPoint<PointSource, PointTarget>::
OptimizationFunctorWithIndices::df(const Vector6d& x, Vector6d& g)
{
Eigen::Matrix4f transformation_matrix = gicp_->base_transformation_;
gicp_->applyState(transformation_matrix, x);
// Zero out g
g.setZero();
// Eigen::Vector3d g_t = g.head<3> ();
// the transpose of the derivative of the cost function w.r.t rotation matrix
Eigen::Matrix3d dCost_dR_T = Eigen::Matrix3d::Zero();
int m = static_cast<int>(gicp_->tmp_idx_src_->size());
for (int i = 0; i < m; ++i) {
// The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
Vector4fMapConst p_src =
(*gicp_->tmp_src_)[(*gicp_->tmp_idx_src_)[i]].getVector4fMap();
// The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
Vector4fMapConst p_tgt =
(*gicp_->tmp_tgt_)[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap();
Eigen::Vector4f p_trans_src(transformation_matrix * p_src);
// The last coordinate is still guaranteed to be set to 1.0
// The d here is the negative of the d in the paper
Eigen::Vector3d d(p_trans_src[0] - p_tgt[0],
p_trans_src[1] - p_tgt[1],
p_trans_src[2] - p_tgt[2]);
// Md = M*d
Eigen::Vector3d Md(gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]) * d);
// Increment translation gradient
// g.head<3> ()+= 2*M*d/num_matches (we postpone 2/num_matches after the loop
// closes)
g.head<3>() += Md;
// Increment rotation gradient
p_trans_src = gicp_->base_transformation_ * p_src;
Eigen::Vector3d p_base_src(p_trans_src[0], p_trans_src[1], p_trans_src[2]);
dCost_dR_T += p_base_src * Md.transpose();
}
g.head<3>() *= 2.0 / m;
dCost_dR_T *= 2.0 / m;
gicp_->computeRDerivative(x, dCost_dR_T, g);
}
template <typename PointSource, typename PointTarget>
inline void
GeneralizedIterativeClosestPoint<PointSource, PointTarget>::
OptimizationFunctorWithIndices::fdf(const Vector6d& x, double& f, Vector6d& g)
{
Eigen::Matrix4f transformation_matrix = gicp_->base_transformation_;
gicp_->applyState(transformation_matrix, x);
f = 0;
g.setZero();
// the transpose of the derivative of the cost function w.r.t rotation matrix
Eigen::Matrix3d dCost_dR_T = Eigen::Matrix3d::Zero();
const int m = static_cast<int>(gicp_->tmp_idx_src_->size());
for (int i = 0; i < m; ++i) {
// The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
Vector4fMapConst p_src =
(*gicp_->tmp_src_)[(*gicp_->tmp_idx_src_)[i]].getVector4fMap();
// The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
Vector4fMapConst p_tgt =
(*gicp_->tmp_tgt_)[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap();
Eigen::Vector4f p_trans_src(transformation_matrix * p_src);
// The last coordinate is still guaranteed to be set to 1.0
// The d here is the negative of the d in the paper
Eigen::Vector3d d(p_trans_src[0] - p_tgt[0],
p_trans_src[1] - p_tgt[1],
p_trans_src[2] - p_tgt[2]);
// Md = M*d
Eigen::Vector3d Md(gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]) * d);
// Increment total error
f += double(d.transpose() * Md);
// Increment translation gradient
// g.head<3> ()+= 2*M*d/num_matches (we postpone 2/num_matches after the loop
// closes)
g.head<3>() += Md;
p_trans_src = gicp_->base_transformation_ * p_src;
Eigen::Vector3d p_base_src(p_trans_src[0], p_trans_src[1], p_trans_src[2]);
// Increment rotation gradient
dCost_dR_T += p_base_src * Md.transpose();
}
f /= double(m);
g.head<3>() *= double(2.0 / m);
dCost_dR_T *= 2.0 / m;
gicp_->computeRDerivative(x, dCost_dR_T, g);
}
}